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1 Introduction

Just a few days before the beginning of this year a new virus, widely known as
the COVID-191, was detected in Wuhan, capital of the province Hubei, China.
Since then, COVID-19 has spread all across the globe infecting more than half
a million people2 resulting to the passing of nearly 25000 patients. Beside the
social pain that this new pandemic is causing, the measures put in force to halt
the spreading of the virus are stressing the global economy indicating a domino
effect that can last even longer than the probable eradication of COVID-19.
Yet, these measures are necessary to prevent health system reach their capacity,
an occasion where difficult decisions will need to be made such as prioritization
of patients to be treated.

Estimating the evolution of COVID-19 is imperative for enhancing the ef-
ficiency of health systems and allocating resources. In this study, an Artificial
Intelligence (AI) approach, based on Deep Neural Networks (DNN), is designed
to predict the peak of the virus in Spain. The method consists of a data genera-
tion process based on Monte Carlo simulations of SIR epidemiology models and
the development of the DNN prediction model. In Section 2 a brief summary of
the virus evolution in Spain is presented. Section 3 is dedicating on describing
the methodology that this work is based on while Section 4 presents the results.
Finally Section 5 summarizes this paper findings.

2 Evolution of the COVID-19 in Spain

The first case in Spain was detected on January 31st with an isolated case in
Las Islas Canarias where the virus began to spread, with six cases reported by
the 24th of February. A second case was detected in Baleares on the 9th of
February.

1Coronavirus disease 2019
2At moment of writing this paper
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Figure 1: Total Infected Until 28th of March per Spanish province

Until March 24th there was no official registration of the virus outside the
Spanish islands, however on the following day the virus was detected in Spain’s
largest cities, i.e. Madrid, Catalonia and Valencia.

Subsequently, from then on the number of cases within Spain started to
grow exponentially. In Figure 1 the evolution of COVID-19 is depicted for
each Spanish province separately [2]. According to this figure, Madrid and
Catalonia are the two provinces that COVID-19 spread radically possible due
to the population and density. The majority of the provinces that had only a
few cases where protected by the strict measures put in force by the government.
For instance, in Spain measures started on the 15th of March, while in other
COVID infected countries, similar measures began between 12th-14th of March
[5].

3 Methodology

3.1 The SIR model

A widely used mathematical tool for analysing the spread of a virus is the
SIR (Susceptible-Infected-Recovered) model. In its simplest form the model
is based on a few strong assumptions [6, 7]. First, the number of population
is constant for the duration of the analysis, meaning there are no births or
deaths. Second, the incubation period of an infected is considered to be instant
and third infectivity has a duration similar to the disease [7]. Yet, despite
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these assumptions this model can provide good estimates on the evolution of an
epidemic.

Briefly, the model consists of three coupled ODE3, namely S(t) representing
the susceptible people, I(t) for the infected and R(t) for the recovered, all as
function of time t. Using numerical integration techniques, these equations are
solved for a pre-specified period of time, as in (1) - (3) where β and γ are
the infection and recovery rate parameters, respectively. The ratio defined by
(4) is known as the epidemiological threshold and is a key indicator about the
evolution of a disease.

Ṡ = −βSI (1)

İ = βSI − γI (2)

Ṙ = γI (3)

R0 = β/γ. (4)

3.2 Artificial Intelligence and Deep Neural Networks

Inspired by the human brain cells, DNN are the cornerstone of modern AI. A
typical DNN consists of hundreds (or thousands) of neurons grouped in at least
four layers: an input, an output and two hidden layers. At each neuron two
operations occur: a summation of the weighted neuron inputs and a transfor-
mation of that sum through a mapping function. The type and complexity of
the problem dictates the selection of the mapping function. Overall, DNN can
differ in both size and structure however, all are typically known as universal
function approximators due to their ability to solve any possible problem [4].

DNN can be implemented for Supervised, Unsupervised and Reinforced
Learning related tasks. Reasonably, the structure will differ depending on the
type of learning. Regardless, in the estimation of the COVID-19 peak the prob-
lem is formulated as a Supervised Learning task where partially observed SIR
curves are labeled by their parameters of their full curves. This, in essence, will
try to provide the parameters of an actual case, where the disease is in its first
days of spreading and determination of the parameters of a realistic SIR model
can be difficult.

To illustrate, in Spain as of March the 28th the number of infected people
followed a steep upwards trend, as depicted in Figure 2. According to these
dates we extract the corresponding curves along with their parameters from
the Monte Carlo SIR model database. The DNN is trained to detect from this
partial information the true parameters β and γ. Once trained the data shown
in Figure2 are fed into the DNN to deduce the β and γ parameters.

3Ordinary Differential Equations
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Figure 2: Total Infected Until 28th of March in Spain.
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Figure 3: Database Generation

3.3 Monte Carlo Database Generation

Based on the hypothesis that a SIR model can explain the behavior of COVID-
19, Monte Carlo simulations are implemented for generating a set of probable
SIR models by treating β and γ parameters as random variables. The workflow
presented in Figure3 shows the process that generates the database for training
and testing the estimation model.

For iteration m = [1, · · · ,M ], where M is the total number of iterations, a
random set of parameters is drawn, which is used to develop a unique SIR model.
Ultimately, the two sets of data consist by the numerical integration of SIR for
the infected agents (i.e. X ∈ RM×365) and their corresponding parameters (i.e.
Y ∈ RM×3). To limit the simulations to generate only relevant data a constraint
has been added to maintain beta and gamma within the the estimated range of
WHO [1]. That is, the epidemiological threshold is constrained within the open
set 1 < R0 < 4.

In this work, the number of simulated SIR models are M = 4 · 105 where
a fraction of the resulted infected curves are plotted in Figure 4. The random
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selection of β and γ generates the different possible outcomes of the virus given
a fixed population.

Figure 4: Monte Carlo Database Generation Profiles

4 Results

4.1 DNN

The developed DNN consists of one input layer with 17 neurons (one for each
day shown in Figure 2) and an output layer with 3 neurons representing the β,
γ and initial population as depicted in Figure 5. The hidden layers consist of 50
neurons and 1 bias neuron each, all with ReLu4 activation function. The total
number of trainable parameters can be found in Table1. The loss function of
the DNN is the Mean Absolute Error (MAE), as in (5) where yi and ŷi are the
true and predicted values, respectively, of the i-th sample. The loss function is
minimized using the Adam[3] optimizer, whereas the Mean Absolute Percentage
Error (MAPE), as in (6), is used for evaluating the performance of the model.
This is because it is more convenient to compare performance between different
DNN designs.

MAE = (
1

n
)

n∑
i=1

|yi − ŷi| (5)

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (6)

The aforementioned DNN model is trained in Python using Tensorflow and
Keras backend for 30 epochs using an early stopping callback to prevent over-
fitting. The training and validation loss are depicted in Figure 6. As it can be

4Rectified Linear unit
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Figure 5: Structure of DNN

Table 1: DNN parameter List per layer

Layer Parameters

Input 0
Hidden 1 900
Hidden 2 2550
Output 153

Total 3603

observed the callback terminated training at epoch 6 and rolled-back the model
parameters to epoch 5 where the lowest MAPE is achieved.

4.2 Evaluation on Unseen Cases

A separate test set was kept aside from the development process of the DNN.
The reason is that tuning a model according to the validation set can lead to
overfitting the model on that set. This will hinder the ability of the model to
generalize in actual cases.

Concretely, a random sample is chosen to be used for predicted and plotting
the true and estimated SIR model. As shown in Figure 7 the DNN predicts
accurately the parameters of the SIR model according to the partial curve of
infected people. In fact, the true and estimated parameters are given in Table
2. For the case presented in Figure 7 the overall error is 1.4% whereas the total
MAE and MAPE in the test set is 0.0144 and 13.293114%, respectively.
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Figure 6: Performance of DNN
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Figure 7: Estimation of SIR parameters on a random unseen case
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Table 2: True and predicted parameters of random unseen case

SIR parameters Predicted True Error (%)

β 0.6238 0.6219 0.3
γ 0.168 0.167 1.1

Population (%) 0.068 0.07 2.9
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Figure 8: Prediction of DNN on Peak and Total Infected people in Spain with
4.5 · 105 initial population

4.3 Estimated SIR model for Spain

The purpose of the DNN is to predict what the parameters of a SIR model
would be for the recorded total infected people over a time span of 17 days. The
period that the DNN was developed on is from the 09/03/2020 up to 25/03/2020
because that is the period where the rapid growth of infected people is observed.
The results presented in Figure 8 show the predicted evolution of the COVID-19
in Spain given the data up until 25/03/2020. The estimated curve fits quite well
with the actual data while the peak of infected people is on the 20/04/2020, i.e.
79 days after the first case of COVID-19 recorded in Spain.

The SIR model is a parameterized model that requires a population to be
defined from the beginning. The peak value and peak occurrence are sensitive
to the aforementioned parameter. Therefore, using the predicted parameters β
and γ and accepting them as true, SIR models for different levels of population
reveal that day of the peak ranges from 68 to 91 days after 1st of February i.e.
09/04/2020− 02/05/2020 as illustrated in Figure 9.
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Figure 9: Days until peak as a function of population consider in SIR

5 Conclusions

In this paper, the application of a DNN has been studied for the identification
of the parameters of the SIR model that modulates the COVID-19 virus. The
DNN is an advanced technique that has made possible to know the parameters
of the SIR model that better adapts to the data of Spain (being this the studied
case) although the DNN can be trained for the rest of countries as well as of
provinces.

The simplicity of the proposed approach with the DNN allows to identify the
SIR parameters for different COVID-19 evolution curves what it could help the
scientific community to identify curves from different population sizes in contact
with the virus. Further studies on COVID-19 evolution curves are required,
however in this case of study the model has been able to correctly obtain the
SIR model parameters, thus generating a population-dependent model.
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